Pituitary adenylate cyclase-activating polypeptide and melatonin in the suprachiasmatic nucleus: effects on the calcium signal transduction cascade.
نویسندگان
چکیده
The suprachiasmatic nucleus (SCN) harbors an endogenous oscillator generating circadian rhythms that are synchronized to the external light/dark cycle by photic information transmitted via the retinohypothalamic tract (RHT). The RHT has recently been shown to contain pituitary adenylate cyclase-activating polypeptide (PACAP) as neurotransmitter/neuromodulator. PACAPergic effects on cAMP-mediated signaling events in the SCN are restricted to distinct time windows and sensitive to melatonin. In neurons isolated from the SCN of neonatal rats we investigated by means of the fura-2 technique whether PACAP and melatonin also influence the intracellular calcium concentration ([Ca2+]i). PACAP elicited increases of [Ca2+]i in 27% of the analyzed neurons, many of which were also responsive to the RHT neurotransmitters glutamate and/or substance P. PACAP-induced changes of [Ca2+]i were independent of cAMP, because they were not mimicked by forskolin or 8-bromo-cAMP. PACAP caused G-protein- and phospholipase C-mediated calcium release from inositol-trisphosphate-sensitive stores and subsequent protein kinase C-mediated calcium influx, demonstrated by treatment with GDP-beta-S, neomycin, U-73122, calcium-free saline, thapsigargin, bisindolylmaleimide, and chelerythrine. The calcium influx was insensitive to antagonists of voltage-gated calcium channels of the L-, N-, P-, Q- and T-type (diltiazem, nifedipine, verapamil, omega-conotoxin, omega-agatoxin, amiloride). Immunocytochemical characterization of the analyzed cells revealed that >50% of the PACAP-sensitive neurons were GABA-immunopositive. Our data demonstrate that in the SCN PACAP affects the [Ca2+]i, suggesting that different signaling pathways (calcium as well as cAMP) are involved in PACAPergic neurotransmission or neuromodulation. Melatonin did not interfere with calcium signaling, indicating that in SCN neurons the hormone primarily affects the cAMP signaling pathway.
منابع مشابه
Pituitary adenylate cyclase-activating polypeptide 38-mediated Rin activation requires Src and contributes to the regulation of HSP27 signaling during neuronal differentiation.
Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) is a potent neuropeptide that acts through G-protein-coupled receptors. While it is well established that PACAP mediates both neurotrophic and neurodevelopmental effects, the signaling cascades that underlie these diverse actions remain incompletely characterized. Here we show that the Ras-related Rin GTP-binding protein, a GTPase ...
متن کاملCREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access.
The suprachiasmatic nucleus (SCN) is a central pacemaker in mammals, driving many endogenous circadian rhythms. An important pacemaker target is the regulation of a hormonal message for darkness, the circadian rhythm in melatonin synthesis. The endogenous clock within the SCN is synchronized to environmental light/dark cycles by photic information conveyed via the retinohypothalamic tract (RHT)...
متن کاملThe 38-amino acid form of pituitary adenylate cyclase-activating polypeptide stimulates dual signaling cascades in PC12 cells and promotes neurite outgrowth.
Vasoactive intestinal peptide (VIP) activates adenylylcyclase in sympathoadrenal cells at concentrations greater than 10(-6) M. We demonstrate here that two forms of a newly discovered peptide with homology to VIP named pituitary adenylate cyclase-activating polypeptide (PACAP) are much more potent activators of signal transduction in PC12 cells. Both the 27- and 38-amino acid forms of PACAP el...
متن کاملChronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats
Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeat...
متن کاملMechanisms mediating pituitary adenylate cyclase-activating polypeptide depolarization of rat sympathetic neurons.
The direct effects of pituitary adenylate cyclase-activating polypeptides (PACAP) on sympathetic neurons were investigated using rat superior cervical ganglion neurons. Electrophysiological and pharmacological analyses were used to evaluate PACAP modulation of sympathetic neuron membrane potentials and to investigate potential ionic and intracellular signaling mechanisms mediating the responses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 1 شماره
صفحات -
تاریخ انتشار 1999